Quantitative Aptitude: Quadratic Equations Set 11
Directions: In the following questions, two equations numbered are given in variables x and y. You have to solve both the equations and find out the relationship between x and y. Then give answer accordingly-
- I. 3x2 – 8x + 4 = 0
II. 3y2 – 16y + 16 = 0
A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established
- I. 3x2 + 10x + 7 = 0
II. 2y2 – 5y – 12 = 0
A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established
- I. 4x2 + 15x + 9 = 0
II. 4y2 – 13y – 12 = 0
A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established
- I. 3x2 + 23x + 30 = 0
II. 3y2 – 4y – 4 = 0
A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established
- I. 5x2 – 36x – 32 = 0,
II. 3y2 – 11y + 6 = 0
A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established
- I. 4x2 + 17x + 18 = 0,
II. 3y2 + 4y – 4 = 0
A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established
- I. 4x2 – 9x – 9 = 0,
II. 4y2 + 11y + 6 = 0
A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established
- I. 3x2 – 19x + 28 = 0,
II. 4y2 – 11y + 6 = 0
A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established
- I. 3x2 + 19x + 28 = 0,
II. 6y2 – y – 2 = 0A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established
- I. 3x2 + 7x – 6 = 0,
II. 6y2 – y – 2 = 0
A) x > y
B) x < y
C) x ≥ y
D) x ≤ y
E) x = y or relation cannot be established